For the data listed below, PurchaseIncome ($ ‘000)AgeGender071.94220100.44210105.6441183.13920114.24311113.54410115.24210100.4352092.64320123.84210122

For the data listed below,

 

Purchase

Income ($ ‘000)

Age

Gender

0

71.9

42

2

0

100.4

42

1

0

105.6

44

1

1

83.1

39

2

0

114.2

43

1

1

113.5

44

1

0

115.2

42

1

0

100.4

35

2

0

92.6

43

2

0

123.8

42

1

0

122.8

45

1

1

98.6

46

2

0

107.6

41

2

0

108.4

42

2

1

138.8

41

1

1

109.9

44

2

1

136.2

47

1

1

117.6

38

2

1

122.8

43

2

0

121.8

45

2

1

126.6

41

2

1

125.8

46

2

1

138.8

42

2

0

149.6

37

1

1

159.5

33

2

Code definitions: Purchase 0 – Not purchased and 1 – Purchased; Gender 1 – Male and 2 – Female

Fit a logistic regression model to predict purchase decision. Identify significant predictors and comment on classification accuracy.