SEU Management Spreadsheet Decision Modeling Worksheet

Description

Powell, S. G., & Baker, K. R. (2014). Management science: The art of modeling with spreadsheets (4th ed.).Wiley.


‫المملكة العربية السعودية‬
‫وزارة التعليم‬
‫الجامعة السعودية اإللكترونية‬
Kingdom of Saudi Arabia
Ministry of Education
Saudi Electronic University
College of Administrative and Financial Sciences
Assignment 3
Spreadsheet Decision Modeling (MGT 425)
Due Date: 30/04/2022 @ 23:59 (End of Week 13)
Course Name: Spreadsheet Decision
Modeling
Course Code: MGT 425
Student’s Name:
Semester: 2
CRN:
Student’s ID Number:
Academic Year: 2021-22-2nd
For Instructor’s Use only
Instructor’s Name:
Students’ Grade:
Marks Obtained/Out of 10
Level of Marks: High/Middle/Low
General Instructions – PLEASE READ THEM CAREFULLY








The Assignment must be submitted on Blackboard (WORD format only) via
allocated folder.
Assignments submitted through email will not be accepted.
Students are advised to make their work clear and well presented, marks may be
reduced for poor presentation. This includes filling your information on the cover
page.
Students must mention question number clearly in their answer.
Late submission will NOT be accepted.
Avoid plagiarism, the work should be in your own words, copying from students
or other resources without proper referencing will result in ZERO marks. No
exceptions.
All answered must be typed using Times New Roman (size 12, double-spaced)
font. No pictures containing text will be accepted and will be considered
plagiarism).
Submissions without this cover page will NOT be accepted.
Learning Outcomes:
No.
Course Learning Outcomes (CLOs)
CLO1
Find some structured ways of dealing with complex
managerial decision problems.
Explain simple decision models and management science
ideas that provide powerful and (often surprising)
qualitative insight about large spectrum of managerial
problems.
Demonstrate the tools for deciding when and which
decision models to use for specific problems.
Build an understanding of the kind of problems that is
tackled using spreadsheet modeling and decision analysis.
CLO2
CLO3
CLO4
Question Number
Question 1
Question 2, 3
Question 4
Question 5
Assignment Instructions:
• Log in to Saudi Digital Library (SDL) via University’s website
• On first page of SDL, choose “English Databases”
• From the list find and click on EBSCO database.
• In the Search Bar of EBSCO find the following article:
Title: “Modeling Autonomous Decision-Making on Energy and Environmental
Management Using Petri-Net: Case Study”.
Author: Niken Prilandita, Benjamin McLellan, Tetsuo Tezuka.
Assignment Questions: (Marks 10)
Read the above case study and answer the following Questions:
1. Explain the Autonomous Decision Making that can be taken by managers in business
organizations (150-200 words) 2 Marks
2. What are the reasons that many countries around the world are gradually shifting
towards sustainable energy options? (150-200 words) 2 Marks
3. Elaborate the global agenda and technological challenges for creating a more
sustainable environment. (150-200 words) 2 Marks
4. Why energy decision-making functions are occurred at various stakeholder levels, and
how the decisions made by one stakeholder may affect others in the total energy system?
(150-200 words) 2 Marks
5. What you have learned from this study and how it is beneficial for you as a
management professional (150-200 words) 2 Marks.
Answers:
challenges
Article
Modeling Autonomous Decision-Making on
Energy and Environmental Management Using
Petri-Net: The Case Study of a Community in
Bandung, Indonesia
Niken Prilandita *, Benjamin McLellan and Tetsuo Tezuka
Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan;
b-mclellan@energy.kyoto-u.ac.jp (B.M.); tezuka@energy.kyoto-u.ac.jp (T.T.)
* Correspondence: nikenpri@sappk.itb.ac.id; Tel.: +81-75-753-4739; Fax: +81-75-753-9189
Academic Editor: Palmiro Poltronieri
Received: 28 December 2015; Accepted: 5 April 2016; Published: 14 April 2016
Abstract: Autonomous decision-making in this study is defined as the process where decision-makers
have the freedom and ability to find problems, select goals, and make decisions for achieving the
selected problems/goals by themselves. Autonomous behavior is considered significant for achieving
decision implementation, especially in the context of energy and environmental management, where
multiple stakeholders are involved and each stakeholder holds valuable local information for making
decisions. This paper aims to build a structured process in modeling the autonomous decision-making.
A practical decision-making process in waste-to-energy conversion activities in a community in
Bandung, Indonesia, is selected as a case study. The decision-making process here is considered as
a discrete event system, which is then represented as a Petri-net model. First, the decision-making
process in the case study is decomposed into discrete events or decision-making stages, and the
stakeholders’ properties in each stage are extracted from the case study. Second, several stakeholder
properties that indicate autonomous behavior are identified as autonomous properties. Third,
presented is a method to develop the decision-making process as a Petri-net model. The model is
utilized for identifying the critical points for verifying the performance of the derived Petri-net.
Keywords: autonomy; decision-making; Petri-net; energy; environmental; community; Indonesia
1. Introduction
The recent global agenda and technological challenges for creating a more sustainable
environment have encouraged countries around the world to gradually shift towards sustainable
energy transitions. Upon the new global agreement of Sustainable Development Goals, every country
is now highly anticipated to direct their efforts towards realizing a more sustainable energy system and
environment [1]. From the technology side, the emergence of new technologies, such as smart grids
and source-centered renewable energies, have expanded the potential and requirements of energy
generation and management in ways that have not been available previously. These facts suggest that
the energy system is likely to become more distributed and localized, thus the decision-making and
policy-making process in the energy sector should be adjusted to follow this future tendency [2].
Most decisions made on energy and environmental management affect a large number of people
and, thus, are of public interest. Decision-making in this sector usually becomes complicated since
various interests need to be accommodated in the process. Moreover, once a consensus has been
successfully reached, it does not guarantee successful implementation. Various decision-making
approaches for reaching an easy consensus, as well as for achieving successful implementation,
have been proposed. Two common approaches in decision-making are with the centralized and the
Challenges 2016, 7, 9; doi:10.3390/challe7010009
www.mdpi.com/journal/challenges
Challenges 2016, 7, 9
2 of 26
decentralized approaches [3,4]. The quest of balancing between the centralized and the decentralized
systems for decision-making is often an issue in organizational management. Easy access to
information with the advancement of information technology, the internet, and other means today,
have made the decision-making style in organizations lean towards a more decentralized style [5,6].
However, this approach may not be entirely applicable for cases in energy and environmental
management that occur in the public domain.
This study puts more focus on autonomy in decision-making processes regardless of whether they
are conducted under a centralized or a decentralized system. Two ways of understanding the concept
of autonomy are considered here. Firstly, autonomy in the political or public administration field,
which is often seen as one of the traits of a more decentralized system [4]. Secondly, as understood
in the current study, autonomy can be considered as a property of persons regardless of the systemic
context [7–9]. Therefore, we argue that autonomy can exist in both centralized and decentralized
approaches because autonomy is the property of each decision-maker.
The hypothesis of this study is that decisions made autonomously are more likely to achieve
successful outcomes. Autonomy in making decisions is believed to be related to an increase in quality
of life. Research from neuroscience has found that actively making decisions can boost pleasure and
increase the decision-makers’ happiness, satisfaction, and perceived control [10]. Furthermore, high
levels of happiness and satisfaction are causal influences on success and achievement, not the other
way around [11]. Simply stated, if a decision-maker has made an autonomous decision, without being
coerced or forced, it is considered more likely that the decision-maker will achieve the decision goal
and benefit from that.
Normatively, stakeholders’ autonomy in making decisions is important, though its important
role in decision-making may not been objectively examined [7]. The fact that we have not found
studies that objectively examined the role of autonomy in decision-making in energy-environmental
management showed that this theme has to date been insufficiently examined. We argue that the
recent global agenda and technological advances in the energy-environmental sector (e.g., smart-grid
technologies, decentralized energy, and market liberalization) expect decision-makers to become more
autonomous. This situation has created the necessity to develop a framework that can represent and
identify the role of stakeholders’ autonomy in the decision-making process. Such a framework would
consist of several elements employed for specific tasks, and is the purpose of the current research.
This paper discusses one of the important elements of the framework, a model that aims to represent,
analyze, and simulate the autonomous decision-making process.
The autonomous decision-making model in this paper is developed as a discrete event system,
and this paper presents the method to build such a model. The decision-making process is
decomposed into discrete events that we call decision-making stages. Afterwards, the properties
of stakeholders involved in each stage are identified; thus, the concept of a discrete event system
for autonomous decision-making is established. Petri-net is utilized to represent the discrete event
system of the autonomous decision-making process. Each decision-making stage, the stakeholders’
properties, and the state after decisions are made; corresponding to a small Petri-net model
consisting of a few transitions and places. The autonomous decision-making model is constructed
by combining all of these small Petri-net models of each event/stage. As an addition, we conducted
analysis of the Petri-net model’s behavior for identifying the stages which are indispensable for an
autonomous decision-making system. These stages are called the critical points in the autonomous
decision-making process.
2. The Definition of Autonomous Decision-Making
This section explains the definition of autonomous decision-making. The term, autonomous
decision-making is defined by dissecting it into the root words comprising it, which are “autonomy”
and “decision-making”. The development of the concept of autonomy as a political and personal
property is historically explained, followed by a brief explanation on various scopes of the
Challenges 2016, 7, 9
3 of 26
decision-making process, and various types of energy decision-making. Based on this information, we
construct the definition of autonomous decision-making used in this study.
2.1. The Concept of Autonomy
The definition of autonomy has been through several changes throughout the course of history.
As mentioned above, there are at least two different concepts of autonomy explained in this paper.
Autonomy originated from the Greek words “auto” which means self, and “nomos” which means law.
This concept was firstly coined referring to the city states in ancient Greece that were self-governing.
Originally, autonomy was defined in a political manner, which was the right of the states (or city-states,
in that instance) to administer their own affairs [9]. In the context of public administration management,
territorial or local autonomy is the result of a decentralization process [12]. In the Indonesian context
for example, the Law of Decentralization number 22/1999, was the beginning of the country’s journey
towards a more decentralized political structure. This law has since become the legal basis for
providing more autonomy to local governments in making decisions regarding their own territory
and environment. The spirit of the law has had a side effect, however, in that it caused the Indonesian
people to gain greater awareness of autonomy, knowing that they had more freedom in choosing
among options. This has promoted decision-making processes to be performed more autonomously
in various levels of society’s hierarchical structure, including at the lower authority levels, such as
villages and sub-districts [13]. Looking at this fact, the term autonomy in Indonesia has gradually
become understood not only as the property of a state or territory, but also as a personal trait.
One of the most important moments in the history of the concept of autonomy was when the
definition of autonomy was transformed from the property of a state in the ancient Greek era, into a
property of persons during the Renaissance era [7,8]. Since then, the concept of autonomy has been
understood in both ways. However, autonomy in the majority of contemporary works is seen as a
property of persons, or personal autonomy [7]. Although the concept of autonomy mainly revolves
around these two definitions, the dimensions of autonomy are understood in many different ways,
depending on which field of study is viewing it. Mackenzie, for example, defined three dimensions
of autonomy, namely self-determination, self-governance, and self-authorization [14]. Other studies
focus on the self-directedness and resoluteness dimensions of autonomy [9]. Meanwhile, the computer
science and information technology fields view the ability to continuously learn or self-learning traits
in the emergence of autonomous machines or artificial intelligence as one of the most important
characteristics of autonomy [15].
2.2. Decision-Making Process
The definition of decision-making has been long established, and since decision-making is
understood as a process of making decisions, then the definitions mostly evolved on the scope
of the process. There are two predominately different views in decision theory regarding the extent
of the decision-making scope. Firstly, decision-making is defined as a process started by identifying
problems or goals, and ended after a decision has been made. One of the main supporters of this
concept was Herbert Simon (1960) [16]. Later, Huber (1980) expanded the concept of decision-making
by defining it as “the process through which a course of action is taken” [17], and the process by
which the decision is implemented is considered as part of the problem-solving process. Most of the
studies that defined the decision-making process came from the field of organizational management.
Meanwhile when decisions need to be made in the public domain, the decision-making process is often
regarded as the whole cycle from problem identification up to decision implementation and evaluation,
and then feeding-back to problem identification. This is known as a generic decision cycle [18], or a
planning process [19]. An example of a decision-making cycle is presented in Figure 1. In this study,
we investigate the decision-making process extended to the implementation stages.
Challenges 2016, 7, 9
Challenges 2016, 7, 9
4 of 27
4 of 26
Figure 1. Example of a decision-making cycle [18,19].
Figure 1. Example of a decision-making cycle [18,19].
2.3. Energy-Environmental
Energy-Environmental Decision-Making
Decision-Making at
Various Stakeholder
2.3.
at Various
Stakeholder Levels
Levels
The following
following section
section explains
explains decision-making
decision-making in
in energy
energy and
and environment
by various
The
environment by
various
stakeholders,
such
as
national
government,
local
government
(provincial/city/regency
governments,
stakeholders, such as national government, local government (provincial/city/regency governments,
and formal
formal agencies/bodies
agencies/bodieswithin
withinthese
theselocal
localgovernments),
governments), community,
community, household
household and
and individual
individual
and
(households
and
individuals
are
considered
as
a
single
decision-maker),
and
non-governmental
(households and individuals are considered as a single decision-maker), and non-governmental
institutions (i.e.,
local
NGOs,
business
or private
sector sector
stakeholders,
media, experts
institutions
(i.e.,international
internationaland
and
local
NGOs,
business
or private
stakeholders,
media,
and
academicians).
As
mentioned
earlier,
decision-making
in
energy
and
environmental
management
experts and academicians). As mentioned earlier, decision-making in energy and environmental
often becomesoften
complex
because
it occurs
in the
and, therefore,
various
stakeholders
management
becomes
complex
because
it public
occurs domain
in the public
domain and,
therefore,
various
are involved are
in it.involved
According
toAccording
Sexton, et al.
[20], theetmain
stakeholders
that are usually
in
stakeholders
in it.
to Sexton,
al. [20],
the main stakeholders
that involved
are usually
environment-related
decision-making
are
national
governments,
regional
or
local
government
bodies,
involved in environment-related decision-making are national governments, regional or local
business associations,
environmental
advocacyenvironmental
groups, community
or neighborhood
groups, and
government
bodies, business
associations,
advocacy
groups, community
or
affected
or
interested
individuals.
The
relationships
between
these
stakeholders
can
be
classified
neighborhood groups, and affected or interested individuals. The relationships between
these
into two typescan
of relationship,
are types
vertical
horizontal
(parallel)
relationships
stakeholders
be classified which
into two
of (hierarchical)
relationship, and
which
are vertical
(hierarchical)
and
with
each
other
[21,22].
Decision-making
for
individual
stakeholders
and
groups
of
stakeholders
is
horizontal (parallel) relationships with each other [21,22]. Decision-making for individual
influenced
both
by
the
structure
of
relationships
and
the
characteristics
of
the
individual
stakeholders.
stakeholders and groups of stakeholders is influenced both by the structure of relationships and the
Energy related
and policy-making (We use the phrase “energy (and environmental)
characteristics
of thedecision-making
individual stakeholders.
decision-making
and
policy-making”
or “decision-making
in energy
in this paper
Energy related decision-making
and policy-making
(Wesector”
use interchangeably
the phrase “energy
(and
because
the
research
object
is
related
with
both
energy
and
environmental
sector.)
at
the
national
level
environmental) decision-making and policy-making” or “decision-making in energy sector”
tends to occur in aintop-down
manner,
following
the hierarchical
of the
country’s
institutions.
interchangeably
this paper
because
the research
object structure
is related
with
both energy
and
In
the
UK,
for
example,
energy
decision-making
functions
have
historically
been
performed
mainly
by the
the
environmental sector.) at the national level tends to occur in a top-down manner, following
central
government
and
large
corporations
in
the
private
sector.
This
situation
began
to
change
after
the
hierarchical structure of the country’s institutions. In the UK, for example, energy decision-making
Localism Bill
was
stipulatedbeen
in 2010
aiming tomainly
shift decision-making
power from and
central
governments
to
functions
have
historically
performed
by the central government
large
corporations
individuals,
communities,
and
local
government
[23,24].
Another
example
is
from
a
developing
country,
in the private sector. This situation began to change after the Localism Bill was stipulated in 2010
Indonesia,
where
for more than two
decades
thegovernments
first nationaltoenergy
policy was
introduced
in
aiming
to shift
decision-making
power
from since
central
individuals,
communities,
and
1981,
the
key
strategic
energy
decisions
and
policies
are
made
centrally
by
the
national
government
[25].
local government [23,24]. Another example is from a developing country, Indonesia, where for more
The role
local government
thenational
energy sector
was
recognized
after the promulgation
thestrategic
Energy
than
twoofdecades
since the in
first
energy
policy
was introduced
in 1981, the of
key
Act in 2007.
The act
each
localcentrally
government
to national
formulate
its own local
energy
masterplan,
energy
decisions
andmandates
policies are
made
by the
government
[25].
The role
of local
based
on
the
targets
outlined
by
the
national
energy
masterplan.
government in the energy sector was recognized after the promulgation of the Energy Act in 2007.
Recent
experiences
from
both countries
have shown
that
theenergy
local authorities
mandated
The act
mandates
each local
government
to formulate
its own
local
masterplan,are
based
on the
and
expected
to
have
more
capacity
in
energy
decision-making
functions.
The
long
period
of
targets outlined by the national energy masterplan.
centralized
energy
decision-making
experience
in
both
countries
has
created
a
great
challenge
for
Recent experiences from both countries have shown that the local authorities are mandated and
the
local
to capacity
pick up in
theenergy
task. Lack
of capacity of
the localThe
government
with
regards to
expected authorities
to have more
decision-making
functions.
long period
of centralized
energy
planning,
and
limited
guidelines
on
how
to
formulate
the
masterplan
itself,
are
some
of
energy decision-making experience in both countries has created a great challenge for the
local
the
challenges
faced
by
the
locals.
Despite
the
limited
capacity
and
experience,
local
governments
authorities to pick up the task. Lack of capacity of the local government with regards to energy
around theand
world
have developed
energy-environmental
measures and
localare
action
plans,
planning,
limited
guidelinesvarious
on how
to formulate the masterplan
itself,
some
of as
thea
Challenges 2016, 7, 9
5 of 26
form of participation in global initiatives such as the International Council for Local Environmental
Initiatives (ICLEI) and the Climate Alliance [26]. Aside from having a mandate to implement
energy-environmental measures at the local level, local authorities are also expected to involve and
nurture the community or grassroots levels in local energy initiatives [27].
Energy decision-making functions at the community level have been empirically observed in
North America [28–30]. Most of the decisions and measures taken are on climate change mitigation
planning, considered as the re-emergence of the energy planning efforts which increased after the oil
crisis in the 1970s, but later declined in the 1980s due to lower energy prices [28]. Although the number
of local actions for energy measures in USA were increased after 2006, all of the decision-making
processes identified were initially developed at the municipality level first [28]. The municipalities then
involved the community in their plans to reduce community-wide energy use and GHG emissions.
Although similar, the Canadian experience with its community energy management or community
energy planning program is slightly different from what happened in the USA. Observations of the
Community Energy Plans (CEPs) that emerged during 2003–2007 [29,30] have shown the potential
of community roles in formulating action plans specifically related to energy efficiency, energy
conservation, and application of renewable energies [30]. However, since CEP is part of a broader
commitment of the municipalities on forming local action plans for GHG reduction, the content of
the CEP is often written in accordance to what the municipality or municipal council needs [29].
These practices are somewhat different from what was conceived by Jaccard, et al. [31] as community
energy management.
The practices of energy related decision-making at the community level is also evident in European
countries, such as in the UK and Germany [27,32,33]. Often referred to as grassroots initiatives [27,34]
or community (renewable) energy [33,35], it is defined as projects where communities exhibit a high
degree of ownership and control, and collectively benefit from the outcomes [35]. The term community
in this literature is relatively broad, referring to a group of people who share the same geographical
location (neighborhood communities) or the same interest (non-governmental organizations) [33].
The recent practices of community energy in Europe are gradually shifting as part of socio-political
movements from the grassroots level [27] and, thus, they are more likely to be considered as bottom-up
initiatives when compared to the CEPs in North America.
Energy decision-making at the individual level is traditionally studied as a part of consumer
behavior studies which view the individual as the energy customer or end-user [36,37]. Individuals
as consumers make everyday decisions related to energy; therefore, they are becoming the target of
various energy measures [37], such as the behavior change programs in energy consumption and
energy technology adoption [38]. The high potential of new energy systems and technologies such as
renewable energy systems and smart grids have shifted the focus of individual energy decision-making.
In the light of these technologies, individuals’ energy decisions are not only shaped by the energy
system and policy, but can also shape the system [39]. The social foundation of smart grids consists
of “decentralized socio-technical networks that underpin the electricity consumption of groups of
consumers who are increasingly becoming autonomous” [40]. However, for effective technology
adoption, it is suggested to no longer view the individual solely as a consumer of energy, but also as a
citizen, part of a community or society [37].
From the research related with energy decision-making above, it is found that energy
decision-making functions occur at various stakeholder levels, and the decisions made by one
stakeholder may affect others in the total energy system. The challenge of shifting towards a more
localized and distributed energy system creates a need for every stakeholder not only to actively
participate in energy decision-making, but also to become more autonomous.
2.4. Definition of Autonomous Decision-Making
In this research, we put more focus on autonomy as the property of persons, not as a property of
the system or environment. This study considers that each decision-maker is seen as an autonomous
Challenges 2016, 7, 9
6 of 26
system, or in other words, autonomy is a property of each stakeholder who participates in the
decision-making process. This means that every decision-maker or stakeholder has their own goal to
achieve and has the autonomy to decide by themselves. Thus, as mentioned earlier, this study views
that autonomy can exist in both centralized and decentralized approaches.
In light of this, we define the autonomous decision-making as the process where decision-makers
have the freedom and ability to find problems, select goals, and make decisions for achieving the
selected problems/goals by themselves in a responsible manner based on available information.
It follows that persons having the ability to self-determine, self-govern, show self-control, and
self-learning are persons who exhibit autonomous behavior. The definition for each autonomous
behavior used in this paper is presented in Table A1 in the Appendix.
3. Methodology for Modeling an Autonomous Decision-Making Process
The aim of this study is to develop the autonomous decision-making model for the energy
and environmental management process by using Petri-net. For this aim, an energy-environmental
management project in Indonesian community (Rukun Warga) is selected as a case study. The steps
performed for modeling in this paper are: (1) case selection and data collection; (2) decomposing
the decision-making process and extraction of the stakeholders’ properties; (3) identification of
stakeholders’ autonomous properties; and (4) modeling the decision-making process from the observed
case using Petri-net and analysis of the model.
3.1. Case Study Selection and Data Collection
This paper undertook one decision-making process as a case study to be modeled, and there is a
strong indication to select this particular case. The selected case study was included and investigated
along with other five community decision-making processes in our previous work [41]. These cases
were, in turn, selected from a broader set of around 20 case studies. The five cases were selected due to
their success in project implementation and the availability of detailed documentation and information.
Among the five cases, the community presented in this study was considered to have utilized both
centralized (top-down) and decentralized (bottom-up) decision-making approaches. Since we argued
that autonomous decision-making can occur under both approaches, by selecting this case we can
investigate and model autonomous decision-making under both approaches using the same case.
In addition to that, by using the same case study which exhibits two different decision-making
approaches over a period of time, the behavior change and improved capability of the community in
making decision were observed.
The model developed here is based on a case study of a practical decision-making process for a
waste management system project in a community in Bandung City, Indonesia. The waste management
technique utilized in the community project is a bio-digester installation to transform household waste
to energy (biogas). This case was selected because a considerable number of stakeholders were
involved in the activities with relatively even inputs to the project. Various stakeholders’ involvement
in a project is a rare occasion, especially when almost all stakeholders can contribute relatively evenly
in the project. This situation occurred because the project developed in two phases. The first phase
started as one project and then changed to another project after the first went through a stagnant phase.
The second phase achieved quite a successful outcome and is still in operation at the time of writing.
The stakeholders that were involved in each phase are different, which is one reason why there were
various stakeholder contributions. This unique situation is considered useful for understanding the
possible outcomes from various stakeholders’ engagement when the project changed course.
A thorough data collection is necessary for understanding the case study well. Information
about the community activities and decision-making process were collected using secondary and
primary sources. Various secondary records used were project reports, academic reports, journal
articles, newspaper articles, and web-based articles. Interviews, informal discussions, observation, and
demonstration of the biogas installation were also undertaken during site visits. The primary sources
Challenges
7, 99
Challenges 2016,
2016, 7,
77 of
of 27
26
sources interviewed are the chief of the community, the former community chief, bio-digester
interviewed
arethe
therecycling
chief of the
community,
operators,
and
center
operator.the former community chief, bio-digester operators, and
the recycling center operator.
3.2. Decomposing the Decision-Making Process and Extraction of the Stakeholders’ Properties
3.2. Decomposing the Decision-Making Process and Extraction of the Stakeholders’ Properties
The decomposition of the case study is important for constructing the autonomous
The decomposition
of athe
case study
important
the autonomous
decision-making
model as
discrete
event is
system.
Thereforareconstructing
two steps involved
in this
decision-making
model
as
a
discrete
event
system.
There
are
two
steps
involved
in
this
decomposition, which yield two major results that become the foundation of the decomposition,
discrete event
which yield
two major
results thatdecision-making.
become the foundation
thecommunity
discrete event
system for modeling
system
for modeling
autonomous
Firstly,ofthe
decision-making
process
autonomous
decision-making.
Firstly,
the
community
decision-making
process
is
decomposed
into
is deco

ORDER ASSIGNMENT



Essays Assignment Help

We are a professional paper writing website. If you have searched a question and bumped into our website just know you are in the right place to get help in your coursework. We offer HIGH QUALITY & PLAGIARISM FREE Papers.

How It Works

To make an Order you only need to click on “Order Now” and we will direct you to our Order Page. Fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.

Are there Discounts?

All new clients are eligible for upto 20% off in their first Order. Our payment method is safe and secure. Hire a tutor today CLICK HERE to make your first order